
A METHOD OF CALCULATING THE HEAT TRANSFER IN A LONGITUDINALLY 

IRRIGATED ROD BUNDLE 

N. A. Minyailenko and V. A. Yatsevskii UDC 536.244 

A method for calculating the heat transfer from a gas to a longitudinal rod bundle 
with uneven heating along the length and around the periphery is given. 

Longitudinal flow around tubes or rods is used in various novel exchangers, which has 
given considerable interest to the local heat-transfer conditions and frictional resistance 
in such devices. 

Here we consider a method of examining the heat transfer in a channel of complicated 
cross section, including one represented by a bundle of rods (Fig. i), where the coolant 
flows with Pr ~ I. This constitutes an extension of concepts used for annular channels [I], 
i.e., we extend the analytical method based on superposition of fundamental solutions [i, 2] 
to rod bundles with uneven heat production around the perimeter. 

The method is applicable to experimental and theoretical studies, since the fundamental 
solution, as in the case of turbulent flows in annuli [3], are determined by experiment. 

We make the following assumptions, which have been used elsewhere [3, 4] for turbulent 
flow in channels: 

i) The flow and heat transfer are quasistationary, i.e., the average characteristics do 
not vary in time; 

2) the heat produced by dissipation of the kinetic energy is negligible (this is true 
for a coolant speed much less than the speed of sound): 

3) the effects of mass forces are small by comparison with those of forces due to 
viscosity and inertia; 

4) the Variations in heat-flux density along the axis due to heat conduction and turbu- 
lent transport are samll by comparison with the radial variations; 

5) there are no internal heat sources in the flow; 

6) the region is far from the initial section. 

The superposition principle is applicable to an object described by linear differential 
equations, so we assume that the thermophysical and transport properties of the coolant and 
constructional materials vary little with temperature, although they may take any values pro- 
vided that they are sufficiently smooth functions of the spatial coordinates. 

Then the heat transfer in a rod bundle is described by the following equation [5]: 
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Fig. L Bundle of rods in a circular 
container. 

Linkage conditions for the heat fluxes and temperatures in general have to be specified 
at the wall--coolant boundary: 

~z ~ ~ '  ~' z) I : ~ J ~ ( r ,  % z~ <3) 
dr ,r=Ri Or r=Ri ' 

tt. if, % z)l~=R i = tw(r, % z)l,=~r (4) 

If there are symmetry surfaces in this system for a given distribution of the heat loading, 
we need examine the heat transfer only in part of the system by setting the heat fluxes equal 
to zero at the symmetry surfaces: 

atZOn r =  O, (5) 

where n is the normal to a symmetry surface F. 

The two limiting cases are %w >> ~ and h w << hl, in which case system (1)-(5) degener, 

ares to one describing the temperature distributions with boundary conditions of the ?irst 
and second kinds, respectively [6], for an infinite system of uniformly heated rods: 

(r, % z)l~=~ = f,~ (z), (6)  

- -  ~z 0-5-1 = r~,(z), 
~r/~=~ (7) 

where f~i(z) and fzi(z) are certain functions for each rod i; for instance, fai(z) ~ sin 
(~z/H) in a reactor without end reflectors (H is the length of the fuel rods), wherea~; f'i" 
(Z) = const-z for the case of a boundary condition of the first kind for stabilized heat 
transfer. 

There are major difficulties in solving (i) and (2) subject to the boundary conditions 
(6) and (7), and even greater difficulties occur for the conjugate problem, which in part is 
due to the complexity of describing the turbulent flow of a liquid in such a system. Quanti- 
tative evaluation of the heat transfer for a rod bundle is possible only if numerical methods 
and computers are employed [7-11]. 

The boundary condition (6), which applies for %w >> %l, is obeyed for flow of a gaseous 
coolant in the central cells of a uniformly heated bundle of metal rods or tubes. For 
instance, air flowing in a bundle of rods of steel IKhI8N9T at i00 arm and 300-1500~ gives 
%w/hl falling from 480 to 350, the corresponding figures for helium under these conditions 
being from 90 to 70. In the limiting case %w >> %1, the heat flux %l(3tl/3r) Ir=Ri is most 

inhomogeneous at the perimeter, which must be borne in mind, since the practical purpose of 
studies on such systems is to find the temperature distribution for a given distribution of 
the heat production, i.e., to solve a boundary-value problem with boundary conditions ~f the 
second kind, not the first. 
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When (1) and (2) have been reduced to dimensionless form, we neglect themixlng between 
channels and obtain 

. t o : ( f  

o[ oo 1 ,, o[ 91 
The boundary conditions are formulated by dividing the surface of the rods into elementary 
heat-transfer parts (segments), whose size and disposits we chose such that the thermal 
influence of rod No. i on the adjacent rod No. 7 occurs entirely within the AB segment, which 
in our case is 60 ~ (Fig. I). We assume that the following boundary conditions of the second 
kind apply for an elementary heat-transfer section: 

q~ !-~0~ = eonst - ~ / ~  qi~ (r de,  (8,) 

We i n t r o d u c e  f u n d a m e n t a l  s o l u t i o n s  @ij a n a l o g o u s  to  t h o s e  u sed  i n  [1 ,  2] f o r  t h e  s y s t e m  
o f  e q u a t i o n s  ( l a )  and ( l b ) ,  wh ich  d e s c r i b e s  t h e  t e m p e r a t u r e  d i s t r i b u t i o n  i n  a s y s t e m  s u b j e c t  
t o  t h e  b o u n d a r y  c o n d i t i o n s  (8)  f o r  any  r o d  j ,  w h e r e a s  t h e  cond i~ : ions  a r e  a d i a b a t i c  a t  t h e  
surfaces of the other n -- i rods. For convenience in handling the solutions in determining 
the temperature distribution in rod i, we introduce subscript i instead of the normal coor- 
dinates ~ and ~. The solution for the temperature distribution in this rod is the superposi- 
tion of a certain number of fundamental solutions if the heat load has an arbitrary distribu- 
tion over the perimeter of the rods. The temperature distribution in rod i is described by 
the following equation: 

t.S/2 ~Pl 

E E Oi = - @ii(~, *j) qij(*~) d*j ~ 1 q(~) 
G *9 '_L (9) 

qw~ 

where @ is an angle in the local coordinate system of rod j, whose origin is the line joining 
that rod to the central rod, while that for the central rod is the line joining it to rod No. 
i. If the heat sources are unevenly distributed along a rod, i.e., qj = qj(n), the resultant 
temperature distribution is given by Duhamei's relation: 

1 o _~.Sl= q--w7 "Os dr (10) 

where the integral with respect to s has the meaning of a Riemann--Stieltjes integral. 

Here we examine the nonuniformity in the local temperature distributions that become 
particularly prominent when there are unheated separators and enclosing shells around closely 
spaced rods (a/d h S 1.2), in which case it is sufficient to consider the thermal interaction 
between adjacent rods alone. It is necessary to incorporate the effects of more remote rods 
as a/d h increases. Figure i shows that rod No. 2 is influenced only by segments CB of rod 
No. i, KL of rod No. 7, and GF of rod No. 3. The elementary heat-transfer parts can usually 
be selected in such a way that the specific heat flux averaged over a part is the same as the 
heat flux averaged over the entire perimeter, in which case the explicit form of (9) becomes 
much simpler. A difference fromprevious studies [2, 3] is that the fundamental solution for 
the temperature distribution over the perimeter when only one rod is heated is here defined 
as a trigonometric series: 

~i~ - ~ a~ ic~ Ir (ll) 
I=0 

The coefficients in (ll) are derived from measurements on the temperature variation at the 
surface and the heat-transfer conditions for this geometry. 
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Fig. 2. Comparison of calculated and measured surface temper- 
atures for peripheral rods [solid line) from theory; filled 
points) from experiment; open circles) symmetrical continua- 
tion of the measurements]; 4, deg. 

Fig. 3. Approximation of the Re dependence of coefficients 
in the fundamental solutions. 

In the case of a gas coolant, the function representing the influence of a rod on it- 
self is independent of ~, i.e., ~ii # F(@), so the major components of ~ij will be I = 0 and 

= i, i.e., 

q)u = ao + a~ cos , .  ( l l a )  

If there is an unheated container, 

(I)ijl*=O~ = aO -V al  ~- Omax' (12) 

(i)iJ['i:=lSO~ = ao -- s -~- Omln- 

The meanings of the coefficients then become clear: 

a 0 ---- I/2. (Oma x + Ore:n), a s = I/2-(Oma x -- Omln)" (13) 

The coefficients in the fundamental solutions are functions of Re and the rod-bundle 
pitch a/d h. 

We now envisage simultaneous heating of all rods in the bundle shown in Fig. i; the 

a~ cos (, --~(i -- ~))1. 

temperature of the central rod is then 

6 6 6 " 

07 ----- ~ 77 ~__ "--3 +l n/3 ~ "J - -  " - - 3  = ~ u  + [ao + 
k=l /=1 1=1 

The temperature of a peripheral rod, e.g., No. 2, is 

(14) 

(15) 

6 

Oz _ 1 02~ �9 -4- --~wT(qz,qJ2, + -~27"27 -I- ~*~) = 
2n qw " 

6 

= I } s  ~ i  ~ ~ 2  " ~ + q2 [ aO + a 1 cOS } 1 - -  + 
k=l qw~ 3 

If all the rods are uniformly heated, 

O~ = ~ u  + 6%, 

02 = qJn + 3ao + 2ai cos , .  

(16) 
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TABLE I. Errors in Calculations from (16) and (17) for the 
SurfaceTemperatures of Peripheral Rods 

Dev. of calc .  temp. from Max. dev., %, of meas. temp. from 
meas. value, % av.  over perim. 

~Re 
standard maximum 
deviation value positive negative 

4300 
16600 

:39000 
87000 
188000 

3,8 
4,6 
5,4 
4,3 
4,3 

q-6,3 
--7.  I 
--8.7 
+.7,5 
--8,9 

19,9 
24.1 
25,9 

2 1 , 0  
19,8 

- -14,0 
--14,7 
--16,1 
--12,9 
--14,4 

We used experimental data [12] to determine co, a~, and ~ii; the perimeter temperature for 
the peripheral rods (Fig. 2) was determined by experiment in [12] as the distance z/d h = 81.5 
from the inlet to the heated part, and the results are described closely over a wide range 
in Re by these equations, with the measured values at the perimeter varying within limits 
of • from the mean temperature. Table i gives the errors in using (16) and (17) for the 
surface temperatures of peripheral rods, as well as the relative deviations of the measured 
temperatures from the mean over the perimeter for several different Re. 

The fundamental solutions are linear logarithmic functions of Re for fully developed 
turbulence (Fig. 3), and the coefficients obtained by least-squares fitting are 

~ i  = 384 Re -0.~63, ( 17 )  

@ii = 12 .3Re-~  856 q- 7 5 . 9 R e - I ' ~  cos~,  

Note that (14)-(17) apply for uniform distribution of the mass flow over the elementary chan- 
nels. 

These equations can be used to calculate the heat transfer in longitudinally irrigated 
rod bundles in which the thermal loading varies over the perimeter. The method also enables 
one to determine the rod wall temperature for any distribution of the heat loading and to 
predict the temperature distribution for cases where experiments have not been performed. 

NOTATION 

Cp, heat capacity of heat carrier; p, density of heat carrier; %1' kw' thermal conduc- 

tivities of liquid and wall, respectively; st, turbulent thermal conductivity; ~r' m~' mz' 

velocity components; ~, mean velocity; W z -- ~z/~, dimensionless velocity; r, ~, z, coordin- 

ates in cylindrical system; ~i' angle in local coordinate system of the i-th rod; tl, tw, 

temperatures of liquid and wall, respectively; e = (t -- tin)kl/LTdh, dimensionless tempera- 

ture; d h, hydraulic diameter; Q -- --qvdh/qwT, dimensionless density of volume heat production; 
t.s 

~f , elementary heat-transfer section on the i-th rod; ~, heat-production density; ~i' 

density of heat flux from the surface of the i-th rod; qij' density of heat flux to the i-th 

rod from an elementary heat-transfer section on the j-th rod; R., surface coord, inates of the 
l 

i-th rod; ~ = r/d h, dimensionless radius; n = I/Pe'z/d h, dimensionless length; A w = kw/kl, 

A = i + et/l l, dimensionless thermal conductivities of wall and liquid, respectively; Pe, 

Peclet number; Re, Reynolds number. 
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DESIGN OF A HEAT PIPE WITH SEPARATE CHANNELS FOR VAPOR AND LIQUID 

Yu. E. Dolgirev, Yu. F. Gerasimov, Yu. F. Maidanik, 
and V. M. Kiseev 

UDC 621.565.58~088.8) 

The design of a limited rate heat pipe with individual channels for vapor and 
liquid is discussed. 

One of the efficient structures for low-temperature heat pipes to transmit heat in the 
direction of the gravity field is the heat pipe with separate channels for vapor and liquid- 
the antigravity heat pipe (AGHP) [i, 2]. The complexity of the physical processes occurring 
in this type of heat pipe has been an obstacle to a rigorous analytical description r its 
operation. 

In this paper we describe the calculation of the heat-transfer capability and dr 
tion of the conditions of operation of an AGHP operating in the evaporation regime (Fig. i). 
The input data for the design are the "height" of the heat pipe, its geometrical dimensions, 
the characteristics of the capillary-porous structure, and also the temperatures of the 
vapor and condensate being supplied. In the calculation we define the maximum allowable 
heat-flux surface density in the evaporator and the wall temperature of the compensating 
cavity, and we verify the condition for boiling of liquid in the cavity. 

Under the limiting heat load the capillary heat is equal to the sum of the pressure 
drops in the individual sections of the heat pipe. The basic equation for a heat pipe of 
this construction has the form 

Q 128~"Lve Qz 8A/vc 128~'Lle a ~' _ R2 
nlP~e,Zve + ~ZlZp"d%e +Q Mp'd~ +Q -2~(I"-- + . 4 ~ r  6 2 M p  tve[ R~ 

(1) 
+ 2 In R~ + ~ w ~  ~a__~. i ~ ~ cos o 

" Rz ~ ( R ~ _ _ R a _ _ d v e ) n v e  ! + p ' g L s i n ~ =  

The first term on the left-hand side of Eq. (I) is the pressure drop in the vapo:~ chan- 
nels of the evaporator; the second term is the drop in the main vapor channel; the third 
term is the drop in the liquid channel; the fourth term is the friction loss during motion 
of liquid along the support wall of the wick; the fifth term is the same for the motion of 
the liquid through the contractions between the vapor channels of the evaporator; and the 
sixth term is the loss in the wall layer of the evaporator. The complex geometry of the last 
two sections in this design is approximated by a simpler structure. The wick section from 
Ra to Ra +dve between the vapor-emlssion channels is approximated by an annular layer with 
the same radii. Contraction of the section carrying liquid is taken into account by an 
appropriate coefficient (in this case equal to 2), which is obtained by optimizing the number 
of vapor-emission channels. The wall section for each vapor-emission channel is approxi- 
mated by a rectangular section with an average length equal to dye and an average width of 
R3 -- Ra -- dve, equal to the thickness of the wall layer. The quantity Hr~/a is the perme- 
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